
Weak lensing map inference: a
physics informed Gaussian process

approach

Master Thesis
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Abstract

In this work we propose the use of physically informed Gaussian processes
(GP) to analyse cosmological fields at the map level. We will show that
GPs can capture the statistical behaviour of cosmological fields, provid-
ing us with a likelihood as a function of the cosmological parameters
conditioned to the map. In practice, we set the Gaussian process kernel
to be the 2-point autocorrelation function associated to a 2D discrete flat-
sky convergence map. We find that a GP in this setup is not only able to
generate maps with the wanted 2-point statistics, but also to reconstruct
masked data with an associated uncertainty. Additionally, we perform a
Bayesian inference analysis in order to test the ability of Gaussian pro-
cesses to recover cosmological parameters. We find that we are able to
consistently recover the σ8 and Ωm degeneracy, recovering S8 within two
sigma uncertainty. The data is simulated by a Gaussian random field
realisation of a convergence map of size (10◦, 10◦), 64 × 64 grid, mask
∼ 10% and noise given by a galaxy density of ng = 10 galaxies/arcmin2.

keywords: Gaussian processes, weak lensing.
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Chapter 1

Introduction

Matter bends light. The theory of general relativity predicts that the presence
of matter or energy changes the geometry of space and time, which in turn can
cause what would otherwise be the straight path of a beam of light to curve.
Take a distant source of light. If we assume the universe not to be empty,
then between us and said source there exists a non trivial matter disposition.
As light travels through everything that is in between us and the source, it
gets blocked, bent and distorted. We call this phenomenon weak lensing.
In practice what we measure is the shape of distant galaxies. These images
do not show a distinct lensing feature individually, as such tiny changes can
only be seen with a large number of sources. For example, we observe that
galaxies have a tendency of aligning along a preferred axis, causing a statistical
discrepancy in an otherwise seemingly isotropic universe. For further details
on lensing, please refer to [1] [2]; for weak lensing [3]. The image of a distant
galaxy can change shape or size. Changes in shape are fully characterised by
the shear distortion γ⃗ vector field, where the change in size is given by its
magnitude, the convergence field κ. We lay out a theoretical framework for
weak lensing in Sec. 2.1 as well as details on the cosmology used in this thesis
in Sec. 3.1.1.

A lot of work goes into translating a measurement of distant galaxies to its
mathematically friendly counterpart γ⃗. This is one of the reasons why we will
not be dealing with it in this thesis, as it is outside of our scope. Instead we
will be simulating our own convergence fields. We use a Gaussian random field
(GRF) algorithm for the creation of Gaussianly distributed data. As well as
lognormal transformations to create fields with a distribution that resembles
more closely that in our universe. These transformations are listed in Sec.
2.2; we then use them to simulate our data as explained in Sec. 3.1. We also
verify that the generated fields recover the fiducial power spectrum in Sec.
4.1.1.
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1. Introduction

Θ

C(Θ)

w(Θ)

GP(Θ)

y L(Θ | y)

Figure 1.1: Simplified steps taken by the
model to go from cosmological parameters
Θ to likelihood L using GP. Here C and w
stand for the power spectrum and correla-
tion function respectively, y is the data.

A Gaussian process (GP) usually as-
sumes little prior knowledge about the
data it is applied to. Current research
in the field of cosmology views GPs as a
machine learning tool to be trained. It is
used to accelerate and optimise models
[4] [5] [6], as well as for its interpolation
qualities applied to the reconstruction of
functions determining the evolution of
the universe [7] [8] [9]. Our work, how-
ever, is based on a different approach.
We apply our prior knowledge about 2-
point statistics in cosmology to create a
fully informed GP. Restricting ourselves
to 2D flat-sky weak lensing convergence
fields, as shown in Fig. 1.1, we can:

• compute the angular power spectrum
C(Θ) from a set of cosmological pa-
rameters Θ,

• transform it in the convergence angu-
lar autocorrelation function w(Θ),

• create a zero mean GP with kernel
given by said correlation function,

• evaluate the likelihood L of Θ given a
set of data points y.

With a Bayesian approach we make use
of this pipeline to infer the values of
the cosmological parameters. Running a
Markov chain Monte Carlo (MCMC) we
can sample the posterior distribution of
the cosmological parameters, in particu-
lar we will get contours for Ωm, σ8 and
S8. Other than that, GPs have several
other interesting properties at the field
level. They are not only able to gener-
ate fields that recover the fiducial 2-point
statistics, but are also able to reconstruct
masked fields, a task that usually brings many challenges to Cℓ estimation [10]
[11]. In the field of weak lensing in particular, foreground objects like bright
stars or galaxies can contaminate measurements, leading to the need of mask-
ing such a region, essentially removing the signal.
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Here we list the advantages of our method:

• minimal information loss, as it is a map based method we use all available
data points,

• it can be used as a likelihood for cosmological parameters inference,

• easily deals with masked fields, providing estimates with an associated
uncertainty for the masked points.

Whilst some of the disadvantages:

• the conditioning process depends on the inverse of a correlation matrix,
with a computational effort that grows as ∼ O(n3) for n ∝ data points,
indicating possible scaling issues;

• due to the intrinsic Gaussianity of GPs, the distribution of the samples will
be Gaussian, making it hard to apply them to other fields, say for example
lognormal fields.

GPs in this thesis are presented in a general introduction in Sec. 2.3, followed
by a detailed account of the computational methods used to recover a working
kernel for GPs in Sec. 3.2. In our results we show their ability to create maps
that follow the desired statistic Sec. 4.1.2 and reconstruct data Sec. 4.2. We
also present our attempt at cosmological parameters inference with GPs in
Sec. 4.3.

It is important to note that throughout the thesis we follow the extremely
useful guidelines set by the Miko pipeline [12] on how to deal with discrete
maps in weak lensing.
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Chapter 2

Theoretical Framework

2.1 Weak lensing

2.1.1 Convergence field
Let’s introduce what can only be defined as the protagonist cosmological field
of this thesis: the convergence field [13] [3] [1] [2]. As explained in the intro-
duction weak lensing happens due to the presence of matter between us and
a distant source. In mathematical terms we write this as an integral over the
line of sight of the matter overdensity field, weighted accordingly.

κ(θ) =
∫ χ∗

0
dχW (χ)δm(χθ, χ), (2.1)

W (χ) = 3
2H2

0 Ωm(1 + z(χ))χ
∫ χ∗

χ
dχ′n(z(χ′))

(
1 − χ

χ′

)
. (2.2)

With W (χ) being a measure of the lensing weights; W (χ) incorporates all
of the relevant cosmological parameters, as well as knowledge of the redshift
distribution of the source galaxies n(z).

2.1.2 2-point statistics
2-point statistics such as correlation functions and power spectra are arguably
the most powerful tool of analysis in cosmology. They work as a way to
summarise raw data into something simpler, while still retaining most of the
relevant information; for examples, allowing us to extract constraints on cos-
mological parameters.

Full sky

Let us start by introducing the statistics of a 3D spherically symmetric field,
also known as a full sky field. The 2-point autocorrelation function is defined
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2. Theoretical Framework

as the expectation value E of the product of a random field with its complex
conjugate

w(x, y) ≡ E[ϕ(x)ϕ∗(y)]. (2.3)

Where ϕ(x) is the 2D projection of a spherically symmetric 3D field. We
can now perform a decomposition in spherical harmonics Yℓm. Such a de-
composition gives rise to the correlation function associated to the harmonic
coefficients ϕℓm, the 2D power spectrum Cℓ,

ϕ(x) =
∑
ℓm

ϕℓmYℓm(x̂), (2.4)

Cℓ ≡ δℓmδℓ′m′E[ϕℓmϕ∗
ℓ′m′ ]. (2.5)

In this setup correlation function and power spectrum are therefore related
by,

E[ϕ(x)ϕ∗(y)]
=
∑
ℓm

∑
ℓ′m′

Yℓm(x̂)Y ∗
ℓ′m′(ŷ)E[ϕℓmϕ∗

ℓ′m′ ]

=
∑
ℓm

Yℓm(x̂)Y ∗
ℓm(ŷ)Cℓ

=
∑

ℓ

2ℓ + 1
4π

CℓPℓ(x̂ · ŷ),

where we have used the identity relating Legendre polynomials to spherical
harmonics Pℓ(x̂ · ŷ) = 4π

2ℓ+1
∑

m Yℓm(x̂)Y ∗
ℓm(ŷ). Cleaning up the equations we

are just left with the well known full sky equation

w(θ) =
∑

ℓ

2ℓ + 1
4π

CℓPℓ(cos(θ)), (2.6)

which relates the angular correlation function to the angular power spectrum.

Flat-sky

Most analysis of weak lensing data actually use the flat-sky approximation
[14] [15] [16] [17] [18] [19], our work will not be an exception. Such an ap-
proximation essentially changes our setup to a flat-sky 2D field, instead of the
2D projection of a 3D one, allowing for simpler analytical expressions. In this
setup, harmonic decomposition will not work, we will have to Fourier trans-
form our space instead. To do so, we can assume the existence of a function
C(l) which is the continuous extension of Cℓ. Then we say that C(l) is the
result of a 2D inverse Fourier transformation F ,

{F−1C}(θ) =
∫

d2l

4π2 eil·θC(l). (2.7)

6



2.1. Weak lensing

To prove that {F−1C}(θ) is none other than the angular correlation function,
we make use of the radial symmetry of the cosmological field. Which simplifies
the equation into a 1D integral. Consider the polar coordinate substitution
from (lx, ly) to (l, ϕ), the integral becomes∫

dl

2π
lC(l)

∫
dϕ

2π
eilθ cos ϕ.

Lastly, we make use of the identity
∫

dϕeilθ cos ϕ = 2πJ0(lθ), where J0 is the
zeroth order Bessel function. Which leaves us with

{F−1C}(θ) =
∫

dl

2π
lC(l)J0(lθ). (2.8)

In this form it is clear that Eq. (2.6) and Eq. (2.8) are asymptotically
equivalent, since it is known that J0(ℓθ) −−→ Pℓ(cos(θ)) as ℓ → ∞. This
concludes our heuristic proof that the angular correlation function is recov-
ered from an inverse Fourier transformation of the angular power spectrum
w(θ) ∼ {F−1C}(θ) in the flat-sky approximation. Physically speaking this
approximation makes sense when we consider a patch of sky of size L. The
wavenumber of the flat-sky angular power spectrum is related to its dimen-
sionless counterpart p by

l = 2π

L
p, (2.9)

in other words, it is inversely proportional to the size of the map. Just as we
would expect the geometry of a sphere to become flat when zooming in, the
flat-sky approximation holds as L → 0.

Limber approximation

The way we computationally obtain κ’s 2-point statistics is with the Limber
approximation. We use the code jaxcosmo [20] to compute the 2D power
spectrum C(l) from the 3D matter power spectrum Pδ(k) with the efficient
Limber approximation,

C(l) = Cκκ(l) =
∫ χ∗

0

dχ

χ
W (χ)W (χ)Pδ(k = l

χ
, χ). (2.10)

The assumptions of the Limber approximation are:
• flat-sky, as described previously and
• the matter power spectrum depends only on modes on the field k⊥, essen-

tially setting the modes parallel to the line of sight to zero, k∥ = 0.
Such assumptions allow to simplify the relation between C(l) and Pδ(k) to
a one line integral, Eq. (2.10). It is noteworthy to mention that the Limber
approximation introduces significant errors only for modes l < 10, as explained
in detail in [17]. As far as this work is concerned, we only deal with patches
of size 10◦, which means we have l > 36 according to Eq. (2.9), well within
the range for a good approximation.
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2. Theoretical Framework

2.2 Field generation

2.2.1 Gaussian random field
In order to simulate cosmological fields with a specific power spectrum, we
make use of Gaussian random fields. They are fast to generate and only need
information about the 2-point power spectrum of the field. The algorithm we
use for the generation of GRFs is common to most packages and is explained
in detail in [21] [22]. In 1D, assume a pair of functions functions ξ and P ,
related by a Fourier transformation

ξ(x, y) =
∫

dk

2π
eik(x−y)P (k).

Let W (x) be a Gaussian white noise field and let F denote a Fourier trans-
formation, we then define

ϕ(x) ≡ (F−1P 1/2FW )(x) (2.11)

to be a Gaussian random field. Such a procedure ensures that the covariance
E [ϕ(x)ϕ(y)] of the GRF recovers the correlation function ξ(x, y),

E [ϕ(x)ϕ(y)]

=
∫∫∫∫

dx′dy′ dk

2π

dl

2π
ei(kx+ly)P (k)1/2P (l)1/2e−i(kx′+ly′)E[W (x′)W (y′)]

=
∫∫

dk

2π

dl

2π
ei(kx+ly)P (k)1/2P (l)1/2

∫
dx′ e−i(k+l)x′

=
∫

dk

2π
eik(x−y)P (k)

= ξ(x, y).

Where we have used E[W (x′)W (y′)] = δ(x′ − y′), as white noise is defined by
a constant power spectrum.

Rayleigh distribution

Since we are dealing with 2D maps, our algorithm will have to be implemented
in two dimensions. To do so, we decide to implement the algorithm in Eq.
(2.11) with the use of the Rayleigh distribution R(σ). Given two independent
Gaussian random variables X and Y , the random variable R given by

R =
√

X2 + Y 2,

is said to be Rayleigh distributed. If we then multiply R by the complex
exponential eiθ of a uniformly distributed random variable θ ∼ U(0, 2π), we
obtain a map of Gaussianly distributed complex numbers, which will substi-
tute the FW term in Eq. (2.11). We showcase this equivalency in Fig. 2.1
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2.2. Field generation

for distributions of µ = 0 and σ = 1. The sequence of transformations in 2D
therefore becomes,

ϕ(x) ≡ (F−1P 1/2Reiθ)(x). (2.12)

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3
Gaussian

Rayleigh

0

50

100

0 100

Figure 2.1: Sampling a 2D Gaussian against a Rayleigh distributed amplitude with uniform
complex phase. In purple is the complex number X + iY with X, Y ∼ N (0, 1), in cyan is Reiθ

with R ∼ R(1) and θ ∼ U(0, 2π).

2.2.2 Lognormal field

The universe today is not Gaussian. GRFs are able to capture the 2-point
statistics of cosmological fields, but they cannot capture their skewed distri-
bution. A possible way to get closer to the true distribution of the convergence
field is with a lognormal transformation [23] [24] [25] [12]. In this work we will
denote lognormal transformations as L and adopt the following convention for
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2. Theoretical Framework

both the field and the correlation function,

L−1
w (wL, a) ≡ log

(
wL

a2 + 1
)

= wG, (2.13)

Lκ(κG, a) ≡ a
(
exp(κG − 1

2Var(κG)) − 1
)

= κL. (2.14)

Where the superscripts L and G respectively stand for lognormal and Gaus-
sian, Var(·) stands for the variance of the field and a is the so-called shift
parameter, which is an indicator of the non-Gaussianity of the resulting field.

2.3 Gaussian process
One way to think of Gaussian processes is as an extension of random vectors
to infinite dimensions. Following this train of thought, let’s begin with the
concept of a random variable following a normal distribution. We say,

X ∼ N
(
µ, σ2

)
,

to mean that X is a sample of a Gaussian of mean µ and variance σ2. If we
were to get enough samples X, we would eventually recover its distribution.
The generalisation of this concept to n-dimensions is a collection of random
variables, described by a so-called multivariate normal distribution,

X ∼ N (µ, K) .

Where X = (X0, X1, ...) is a vector of random variables, µ is the mean vector
and K the covariance matrix. For a zero mean field, the covariance matrix is
formed by the variance of each of the random variables on its diagonal, while
the cross correlation terms populate the rest of the matrix.

2.3.1 Definition
Adopting the philosophy of Rasmussen [26], functions can be thought of as
very long vectors of the form (f(x1), f(x2), ...). Such a view allows us to
extend the definition of multivariate Gaussians, to functions. Defining GP a
Gaussian process, a sample function f will be given by:

f(x) ∼ GP
(
m(x), k(x, x′)

)
(2.15)

with m(x) and k(x, x′) defined as,

m(x) = E[f(x)], (2.16)
k(x, x′) = E[(f(x) − m(x))(f(x′) − m(x′))], (2.17)

Mathematically a GP is defined for a continuous function. Computationally
this is not possible and we must treat space as a discrete grid.

10



2.3. Gaussian process

2.3.2 Prior and posterior samples
Given some m(·) and k(·, ·) which define a GP, a random sample from said
GP would be a function f∗ defined on a domain D∗, which is our grid.

f∗ ∼ N (m, K∗∗). (2.18)

Here we adopt the convention K = k(D∗, D∗). When drawing a sample func-
tion from Eq. (2.18), computationally the operation is equivalent to drawing
a vector from a multivariate Gaussian. What we obtain is a so-called prior,
or priors, see Fig. 2.2.

0 2 4 6 8 10
x

−2

−1

0

1

y

samples

Figure 2.2: Prior samples of a GP with mean m(x) = 0 and squared exponential kernel
k(x, x′) = e−(x−x′)2

.

Let’s now see how we can introduce knowledge of data points in this system.
We divide the grid in training points D and test points D∗. To each training
point is associated a known value y and variance σ2

n, whereas the values of
the function at the test points f∗ are unknown. We can summarise this as,[

y
f∗

]
∼ N

(
m,

[
K + σ2

nI K∗
KT

∗ K∗∗

])
(2.19)

where we have once again adopted the notation K = k(D, D), K∗ = k(D, D∗),
K∗∗ = k(D∗, D∗). At this point, one way to find samples that follow the data
would be to blindly draw priors until we get something that goes through all
data points. This would be inefficient and computationally wasteful. Instead,
we make a better guess for the test function values. This operation is called
conditioning, because we condition the joint Gaussians on the training points,
this gives

f∗ | D∗, D, y ∼ N
(
KT

∗ [K + σ2
nI]−1y, K∗∗ − KT

∗ [K + σ2
nI]−1K∗

)
. (2.20)
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2. Theoretical Framework

Conditioning can therefore give rise to what is called a posterior sample, Fig.
2.3. The result is still a multivariate Gaussian, but the mean and variance
given by Eq. (2.20) generate samples that are a better guess of the behaviour
of the function outside of the training points.

0 2 4 6 8 10
x

−1

0

1

2

y

samples

σ region

mean

data

Figure 2.3: Summary plot of a GP conditioned to some data. The cyan line is the mean of the
GP and the filled region corresponds to 1σ. The purple lines are posterior samples, which are
distributed Gaussianly around the mean. The data points are clearly marked in black, they are
also the points where all samples converge to.
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Chapter 3

Methods

3.1 Data simulation

3.1.1 Cosmology

Table 3.1: Fiducial
cosmology values
given to jaxcosmo.

Fiducial
Ωm 0.3
Ωb 0.05
Ωk 0
h 0.7
ns 0.97
σ8 0.8
w0 -1
wa 0

This work follows in the general footsteps of data analysis of
weak lensing surveys like HSC [27] and KiDS [28][29], as we
aim to replicate their methodologies. Throughout the work,
we assume a fiducial cosmology of fixed parameter values
as shown in Tab. 3.1. In particular, all data maps will be
generated from a power spectrum following this cosmology.
We will refer to this power spectrum as the fiducial power
spectrum C(l). A leading modelling choice comes with the
redshift distribution n(z). We model it as a Smail-type
distribution [30][31],

n(z) = zα exp
[
−
(

z

z0

)β
]
. (3.1)

The choice of parameters has been made to emulate bin
5 of the KiDS1000 survey [32], with parameters α = 3.5,
β = 4.5, z0 = 1.

3.1.2 Map making pipeline
When dealing with maps of finite size (L, L) and pixel resolution (N, N),
Fourier space is going to have boundaries, just as real space does. These
limits are given by

lmin = 2π

L
,

lmax = 2π

L
N.

13



3. Methods

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Redshift z

0.0

0.5

1.0

1.5
Smail

Figure 3.1: Smail-type redshift distribution for the chosen parameters: α = 3.5, β = 4.5,
z0 = 1.

Therefore, a map of size (10◦, 10◦) and a grid 64 × 64 will have limits
(lmin, lmax) = (36, 2304)rad−1. Now that we have the physical range for
the power spectrum, we can generate data.

C(l)

w̃L w̃G C̃G κ̃G κL

κG

H−1

GRF

LκL−1
w H GRF

Figure 3.2: Sequence of transformations used to generate Gaussian and lognormal maps starting
from the fiducial angular power spectrum. The top branch shows how to generate a GRF which
when transformed to a lognormal field, follows the fiducial C(l). The bottom branch is a
standard GRF realisation starting from the fiducial C(l). L and G stand for lognormal and
Gaussian respectively. H is the Hankel transformation, and tilde refers to intermediate results.

To generate a GRF, we employ the algorithm mentioned in Eq. (2.12). How-
ever, in making a lognormal field, the matter is a bit more complicated. Any
GRF on which we apply the lognormal transformation Lκ, from Eq. (2.14),
becomes a lognormal field. The reason we do not just lognormal transform
any field is given by the fact that they would not recover the fiducial power
spectrum C(l). Our goal is therefore to find a transfer GRF κ̃G which, when

14



3.2. Kernel

transformed lognormally, gives rise to a lognormal field κL that recovers C(l).
To do so, we follow the sequence of transformations illustrated in the top
branch of Fig. 3.2.

3.1.3 Noise and mask

Figure 3.3: Approximately 10% mask applied to the data. Size (10◦, 10◦) and grid 64 × 64.

As all data is being simulated, we only take into account the so-called shape
noise, which is due to the intrinsic distribution of ellipticities and angle formed
with respect to us. GPs will treat each pixel of the map as a random variable
Gaussianly distributed with standard deviation given by [33],

σnoise = σe√
ngApx

. (3.2)

We use values of σe = 0.26, ng = 4, 10, 30, 100 galaxies/arcmin2, and a pixel
area given by the pixel resolution squared, Apx = (L/N)2. For our highest-
resolution run, we have N = 64 and use ng = 10 galaxies/arcmin2, which
results in a noise standard deviation of σnoise ∼ 0.0088. The mask being used
as seen in Fig. 3.3, covers approximately 10% of the patch [34]. We keep the
noise and mask random seeds fixed throughout the work.

3.2 Kernel
The kernel of a Gaussian process is given by a function of the form k(x, y). It
takes in two points, x and y, and returns the value of their correlation. In our
case, specifically, x and y will be two points in a grid of shape (N, N), and
the kernel function will be the convergence angular autocorrelation function.
As all code used for this paper is written in JAX [35] we opt for the use of

15



3. Methods

the library tinygp [36] for all Gaussian process computations. tinygp allows
for the use of a custom kernel with a custom evaluate method, which takes
two points on the grid and returns the correlation value. We follow with two
Python pseudocodes of our kernel implementations.

Listing 3.1: kernel_Hankel uses the helper function Hankel which returns a 1D callable correla-
tion function w. Then finds the euclidean distance between x and y and evaluates the correlation
function at that point. We will discuss how we perform the Hankel transformation in the following
section.

class kernel_Hankel :
def __init__ (self , cl , N, L):

self.w = Hankel (cl , N, L)
self.r = L / N

def evaluate (self , x, y):
theta = self.r * sqrt(sum(x - y))
return self.w(theta)

Listing 3.2: kernel_FFT performs a 2D Fourier transform on the power spectrum cl2D. This
returns a 2D array that is the correlation function. Then to evaluate w2D we need two indices.
These are given by the difference of x and y component wise. Furthermore we have to be careful
about possible mismatches between the shape of cl2D and the grid of our map. For this we have
the renormalisation factor r. We will discuss further how we get cl2D in the following section.

class kernel_FFT :
def __init__ (self , cl2D , N, L):

M = sqrt(cl2D.size)
self.w2D = abs(ifft2(cl2D )) * M**2 / L**2
self.r = M / N

def evaluate (self , x, y):
d0 = self.r * abs(x[0] - y[0])
d1 = self.r * abs(x[1] - y[1])
return self.w2D[int(d0 )][ int(d1)]

3.2.1 Hankel transform
In order to build a Gaussian process kernel, we need to find the correlation
function that best describes the data. The way we do this is by computing
the angular power spectrum and transforming it in the corresponding angular
correlation function. Let’s explore the previously discussed flat-sky relation
between angular power spectrum and correlation function given by Eq. (2.8).
This particular integral of a Bessel function is also known as a zeroth order
Hankel transformation,

w(θ) =
∫

dl

2π
lC(l)J0(lθ). (3.3)
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3.2. Kernel

We will explore two methods for computing this integral: the integration
method Sec. 3.2.1 and the FFTlog method Sec. 3.2.1.

Integration

Integration is the most straight forward way to evaluate the integral, but
it requires to implement an algorithm for the approximation of the Bessel
function J0. The advantages of this method:

• it is easy to integrate over the correct l-range, from lmin and lmax, a freedom
that we do not have with the FFTlog.

The disadvantages:

• integration is computationally slow, especially when dealing with highly
oscillatory behaviour introduced by the Bessel function, which requires fine
sampling.

FFTlog

The FFTlog method [37] is a fast implementation of the Hankel transforma-
tion. In fact it simplifies Eq. (3.3) by assuming a power decomposition of C(l).
Such a decomposition is achievable by taking the fast Fourier transformation
(FFT) in log k, hence the name FFTlog. The power spectrum becomes,

C(l) =
∑

α

cαlυ+iηα . (3.4)

Substituting in Eq. (3.3),

w(θ) =
∑

α

cα

∫ ∞

0

dl

2π
lυ+iηα+1J0(lθ).

Take x = lθ and sα − 1 = υ + iηα + 1,

w(θ) =
∑

α

cαθ−sα

∫ ∞

0

dx

2π
xsα−1J0(x).

Lastly we recognise
∫∞

0 dxxs−1J0(x) = 2s−1

π sin(πs/2)[Γ(s/2)]2, a Mellin trans-
form. Using this tabulated result we conclude that the correlation is given by
the sum,

w(θ) = 1
2π2

∑
α

cαθ−sα2sα−1 sin(πsα/2)[Γ(sα/2)]2. (3.5)

For the Mellin transform identity to hold analytically, the integral bounds have
to go from 0 to ∞. Although computationally we don’t need to consider such a
wide range, we still have to broaden the integration limits to something larger
than our l-range; so as to avoid ringing effects. Experimentally we have found
that extending the l-range between lmin/4 and lmax, is enough to compensate
for such effects. The advantages of this method:
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3. Methods

• the FFTlog method is ultimately much faster than the integration method.

The disadvantages:

• the widening of the l-range needed to avoid ringing effects inevitably adds
power to the correlation function resulting in a higher variance and overall
amplitude.

3.2.2 Fourier transform
The second transformation that we can use to go from power spectrum to
correlation function, is the Fourier transformation discussed in Eq. (2.7). It
is a more fundamental relation than the Hankel transformation as it does not
assume that l is radially symmetric. In our case, low resolution, coupled with
a square map, means that the radial assumption might not apply. Note that,
the lowest resolution grid we use is 32 × 32, with L/N ∼ 19 arcmin; which
is one order of magnitude worse than today’s weak lensing data, around ∼ 3
arcmin according to [12]. In the following Sec. 3.2 we will find experimentally
that the Hankel methods described above do not work well with our GP setup.
For this reason, we explore this method of conversion between angular power
spectrum and correlation function,

w(θ) =
∫

d2l

4π2 e−il·θC(l). (3.6)

As computers can only deal with discrete functions, it is important to note
that we will be performing a discrete Fourier transformation (DFT). We will
use the widely known FFT algorithm to compute DFTs. In particular we use
JAX’s implementation of the 2D FFT algorithm, jax.numpy.fft.ifft2.

Let us find the relation between continuous Fourier transformation and DFT.
The definitions of continuous and discrete Fourier transformations in 1D, are
respectively:

F−1 =
∫

dk

2π
eikx, (3.7)

F−1 = 1
N

∑
p

eikpx. (3.8)

First of all, a DFT is dimensionless. Secondly, it is discrete and bounded. We
can therefore rewrite Eq. (3.7) using the substitution k(p) = 2π p

L to discretise
k-space, ∫

dk

2π
eikx =

∫
dp

L
eik(p)x = 1

L

∑
p

eikpx.

Applying the definition of DFT as seen in Eq. (3.8), it follows that in 1D

F−1 = N

L
F−1. (3.9)
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3.2. Kernel

Which means that the correlation function is given by a backwards normalised
inverse DFT to be scaled by a factor (N/L)d, where d is the dimension of the
considered space. In our case, d = 2.

In order to perform a FFT in 2D, we will need a two dimensional extension of
the angular power spectrum. We make use of its radial symmetry with respect
to l = (lx, ly) and create a 2D grid of shape (M, M) as shown in Fig. 3.4. Now

C1D C2D
l ≡

√
l2x + l2y

Figure 3.4: 1D to 2D extension of the power spectrum C(l)

that we have a 2D power spectrum we can take the inverse two dimensional
fast Fourier transformation to obtain a 2D correlation function. In practice,
we will test two grids, which we name full-range FFT method and half-range
FFT method.

Full-range FFT

The full-range FFT is defined by a grid of shape (2N, 2N). Since the grid is
radial, it will be centered. This implies that if we want to keep information
of all N modes,

2π

L
,

4π

L
, · · · ,

2π

L
N, (3.10)

the grid will have to be at least of shape M = 2N . The advantages of this
method:

• it keeps information on the full range of modes.

The disadvantages:

• it introduces rounding errors, as the field has shape (N, N) and not all of
the possible distance combinations of such a grid are covered bya grid of
shape (2N, 2N).

Half-range FFT

The half-range FFT is defined by a grid of shape (N, N). The advantages of
this method:

• has the perk of having no shape mismatch between field and correlation
function.

The disadvantages:

• it loses half of the l-range, missing information on small scales.
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Chapter 4

Results

4.1 Power spectrum recovery

4.1.1 Gaussian and lognormal fields
We begin by testing the consistency of our Gaussian and lognormal maps
generation pipeline.

−0.02

0.00

0.02

0.04

0.00 0.02
10−1

100

101

102

Gaussian

lognormal

Figure 4.1: Comparison of a Gaussian map, on the left, with a lognormal map on the right.
Both maps arise from the same random seed. The colorbar has been adjusted to enhance
the differences between the two. The histogram plot shows the clear difference in the map
distributions.

We show example realisations of the two fields in Fig. 4.1, Gaussian on left and
lognormal on the right. There’s a visible difference between the two, as it can
be seen clearly from the distribution plot. The main check to perform is for
testing whether the generated fields recover the theoretical power spectrum.
Fig. 4.2 shows that this is the case for the Gaussian fields. They recover the
fiducial C(l) within a few percent error, with larger deviations ∼ 5% at the low
and high ends of the l-range. Instead, lognormal fields present deviations ≳
10%. As the lognormal transformations we use have been reported by different
sources [12][23], the issue must lie with our JAX implementation of the Hankel
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4. Results

transformation. Resolving such issues could be achieved by future iterations
of this work. In this work, we restrict ourselves to the use of Gaussian fields,
as it is enough to prove our thesis and show that Gaussian processes can be
applied to cosmological fields.
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l
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C
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Figure 4.2: Power spectrum estimation from Gaussian and lognormal maps. Mean and standard
deviation are calculated with 500 realisation of both fields.

4.1.2 Gaussian process priors

First, we test the ability of the kernels we have built in Sec. 3.2 to recover the
power spectrum of our cosmology. We test five models in Fig. 4.3: integration,
FFTlog, full-range FFT, half-range FFT and sinc FFTlog. The first four
methods are described in the Gaussian process kernels Sec. 3.2, whereas the
sinc FFTlog referes to a FFTlog model on which we applied smoothing, by
multiplying the power spectrum by a factor of sinc4(l L

2πN ). The recovered
power spectra are plotted against the fiducial power spectrum, or smoothed
power spectrum for the sinc FFTlog. Mean and standard deviation associated
to the plots are calculated from 500 samples. As expected the integration,
FFTlog and full-range FFT perform similarly, as they all contain the same
ammount of information. As these models deviate so strongly from the fiducial
power spectrum we tried applying smoothing, which helps to recover half of
the l-range at large scales. The only method that seems to be consistently
recovering the fiducial power spectrum is the half-range FFT. One could argue
that due to the inherent discreteness and boundedness of the fields we are
working with, using FFTs is the most natural choice; also, half-range FFT
uses the only grid that recovers a correlation function of the same shape as
the field without having to perform binning.
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4.1. Power spectrum recovery
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Figure 4.3: Reconstructed power spectrum from prior sample of GP with the four proposed
kernels: integration, FFTlog, full-range FFT, half-range FFT and sinc FFTlog. Mean and stan-
dard deviation are calculated with 500 prior samples from each GP.
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Figure 4.4: Reconstructed power spectrum from prior samples of a GP, as a function of
{σ8, S8}. Mean and standard deviation are calculated with 500 prior samples for each different
cosmology.

We have also tested the efficacy of the half-range FFT model for different
cosmologies of values {σ8, S8} equal to {0.4, 0.2}, {1.2, 1.5} and, our fiducial
cosmology, {0.8, 0.8}. As Fig. 4.4 shows, the model is independent of the
choice of cosmology. From here on the results will be presented assuming a
kernel built with the half-range FFT model.
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4. Results

4.2 Gaussian process map reconstruction

Armed with a reliable kernel, let’s embark upon the journey of reconstructing
a heavily masked cosmological field. What we will do is: create a noiseless
GRF in the fiducial cosmology Tab. 3.1, True map; apply a mask to obtain the
Data map; condition a Gaussian process which assumes the fiducial cosmology.
Fig. 4.5 lists the result of this operation, showing the resulting mean µ and
standard deviation σ of the conditioned GP. We also plot the ratio between
residuals ∆ = µ−True and standard deviation squared, to test the goodness
of fit of our model, the values of the map sum up to χ2 ∼ 2495. With the
mask covering ν = 2353 pixels, we obtain χ2/ν = 1.06. Of course, this is just
a noiseless application, which is unreasonable for a real application.

Data True µ
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Figure 4.5: Summary of field reconstruction abilities of a Gaussian process conditioned on data.
The left column shows the masked GRF, which is our data. The middle column shows the true
GRF without masks and a posterior sample drawn from the conditioned GP. The right column
shows maps of the mean, standard deviation and residuals over standard deviation squared of the
conditioned GP. Regions of higher uncertainty correspond to the masked regions. The residuals
over standard deviation map also shows how regions with low mask recover the data.
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4.3. Inference of cosmological parameters

4.3 Inference of cosmological parameters
To test the ability of Gaussian processes to recover cosmological parameters
without any prior knowledge except a noisy and masked map, we perform a
MCMC simulation to infer the posterior distributions of σ8 and S8. We use
the convention

S8 = σ8

√
Ωm

0.3 , (4.1)

Table 4.1: Priors used by
our numpyro model for cos-
mological parameter infer-
ence

Prior
S8 U [0.565, 1.78]
σ8 U [0.4, 1]
Ωm U [0.15, 0.95]

to infer deterministically a posterior for Ωm. Such
a reparametrisation is needed due to the strong de-
generacy between σ8 and Ωm. Eq. (4.1) breaks this
degeneracy, changing the geometry of the sampling
space and making the sampling more consistent. The
model assumes uninformed flat priors for the cosmo-
logical parameters, as shown in Tab. 4.1, such prior
bounds are also in accordance with the jaxcosmo re-
lease [20]. The likelihood of the model is given by
a Gaussian process distribution conditioned on Data,
with a standard deviation equal to the noise applied

to the map. The analysis is coded with numpyro [38] [39], using a the No-
U-Turn Sampler (NUTS) method with max_tree_depth=16, target_accept
_prob=0.8. We simulate 8 chains for the 32 × 32 grid and 4 chains for the
64 × 64. Each chain performs 1000 warmup steps and 3000 samples.

4.3.1 One parameter
As a first step and for a consistency check, we run the inference model for one
cosmological parameter, keeping all others fixed. Using a 64 × 64 grid with
ng = 10 galaxies/arcmin2. In Fig. 4.6 we show the inferred distribution for
both σ8 and Ωm. We find that we are able to recover the true value for both
parameters within two sigmas, σ8 = 0.776 ± 0.015 and Ωm = 0.284 ± 0.010.
We notice a slight tendency of the inferred distribution to be biased low; a
tendency we also observe next for both sampled parameters, S8 and σ8.

4.3.2 Two parameters
Effect of noise

We perform some tests on low resolution 32×32 grids to see the effect that the
noise level has on the recovered parameters, see Tab. 4.2. Here we report the
inferred cosmological parameters for one data realisation and different noise
levels, corresponding respectively to ng = 4, 10, 30 and 100 galaxies/arcmin2,
see Eq. (3.2). The inferred value of S8 can vary as much as a full σ between
high and low noise runs. Keeping in mind that σ8 and Ωm are extremely
unreliable due to relative uncertainties of ∼ 25−30% caused by the degeneracy:
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Figure 4.6: Inferred posterior distribution of σ8 on the left and Ωm on the right. Dotted lines
indicate the 1σ level. Truth values corresponding to the fiducial cosmology are indicated in blue.

Table 4.2: List of inferred cosmological parameters inferred by the model with a small 32 × 32
grid and for a fixed true GRF realisation. We present the cosmological parameters inferred as we
increase the noise level, corresponding to ng = 4, 10, 30 and 100 galaxies/arcmin2.

σnoise 0.0069 0.0044 0.0025 0.0014
S8 0.716 ± 0.043 0.733 ± 0.040 0.747 ± 0.041 0.752 ± 0.042
σ8 0.645 ± 0.157 0.628 ± 0.158 0.632 ± 0.166 0.631 ± 0.170
Ωm 0.423 ± 0.164 0.469 ± 0.175 0.485 ± 0.186 0.497 ± 0.193

as a general trend we notice Ωm gets bigger when σ8 gets smaller with less
noise.

Inferred cosmological parameters

Running the model for a larger 64 × 64 grid with ng = 10 galaxies/arcmin2,
gives much better constraints on the cosmological parameters. We present the
values recovered by the posterior distributions, listed as follows in Tab. 4.3.

Table 4.3: Mean and sigma values recovered from the inferred distributions of the cosmological
parameters.

S8 σ8 Ωm

0.762 ± 0.028 0.745 ± 0.151 0.353 ± 0.143

Fig. 4.7 shows the inferred posterior distributions and contours for the three
cosmological parameters σ8, Ωm and S8. Looking at the contours, we obtain
the well known banana-shaped degeneracy between σ8 and Ωm. The S8 and
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4.3. Inference of cosmological parameters

Ωm contour presents sharp cuts for high and low Ωm, indicating an issue
with the bounds of the uniform priors imposed. Unfortunately the jaxcosmo
package does not allow for the choice of priors to be wider than what shown
in Tab. 4.1, as the model then starts to have divergent samples.
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Figure 4.7: Inferred posterior distributions of S8, σ8 and Ωm. For noise level σnoise ∼ 0.0088.
Contours indicate the 1σ and 2σ credible interval respectively. Dotted lines indicate the 1σ level.
Truth values corresponding to the fiducial cosmology are indicated in blue.

4.3.3 Posterior checks

Following the two parameter inference model, we perform some posterior
checks at the map level [40]. Fig. 4.9 sums up the ability of the model to
recover the true map, noiseless and unmasked. Here we present the run with
noise level σnoise ∼ 0.0088 and a 64×64 grid. We show the mean and standard
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deviation for the sample with highest likelihood out of the 12000. The mean
field µ is visibly different to the true field in the masked regions and it seems
to be of overall lower amplitude. The sample map is comparable to the noisy
data; which is to be expected, as the internal noise given to the Gaussian
process is the same as the noise level of the data. The standard deviation
map σ presents an overall amplitude comparable to the noise level ∼ 0.010,
with higher values for the masked regions. Summing up the map values of
the residuals divided by standard deviation squared, we obtain a χ2 ∼ 1297.4.
Compared to the number of free parameters ν in our inference model, which
for a 10% mask and a 64 × 64 grid, is ν = 3689. The value of χ2 therefore
seems to be low, indicating that the noise level assumed by the GP is over-
estimated. This is supported by the fact that the sample map looks just as
noisy as the data, according to Fig. 4.8, its distribution is in fact just as wide
as the noise.
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Figure 4.8: Residual distributions of the mean and sample compared to noise. The mean is
less spread, whereas the sample is wider.
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Figure 4.9: Summary of the two parameter inference at the map level. The left column shows
the masked and noisy GRF realisation used, which is our data. The middle column shows the
true GRF and a sample from the conditioned GP. The right column shows maps of the mean,
standard deviation and residuals over standard deviation squared resulting from the numpyro
model sample with highest likelihood. Regions of higher uncertainty correspond to the masked
regions.
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Chapter 5

Conclusion

We have hereby introduced the tool of Gaussian processes to the landscape of
map inference of cosmological fields, in particular weak lensing convergence.
We considered how the 2-point statistics of cosmological fields changes when
we are dealing with bounded and discrete maps in Sec. 2.1. We discussed
the realisation of Gaussian and lognormal fields in Sec. 2.2, and showed their
ability to recover the 2-point statistics that they encode, in Sec. 4.1.1. We
have included masking and noise to the data to simulate realistic maps in Sec.
3.1. We have shown that it is possible to apply physical knowledge about
the 2-point correlation function of a cosmological field in order to set up a
Gaussian process able to produce a Gaussian realisation of such a field. We
considered different set ups for the Gaussian process kernel in Sec. 3.2 and
showed how they fare against one another in Sec. 4.1.2, ultimately proving
empirically that the half-range FFT model is the best. In Sec. 4.2 we present
an application of Gaussian processes to a noiseless masked convergence map,
in order to showcase its ability to reconstruct a heavily masked map. Finally
we present our results for the cosmological parameters inference with GPs,
conditioning on noisy and masked data. When running the inference model
on one cosmological parameter we recover both parameters within two sigmas,
σ8 = 0.776 ± 0.015 and Ωm = 0.284 ± 0.010. For the two parameter inference
we observe the well known banana-shaped degeneracy between σ8 and Ωm, as
well as recovering 0.762 ± 0.028 within two sigmas.

In future studies GPs could be tested on maps with larger grids. In order to
achieve a resolution of ∼ 3 arcmin with a map of size (10◦, 10◦), a 200 × 200
grid is needed. Too big for a GP. The bottleneck is given by the inversion of
the kernel matrix, see (2.20). Approximations of this operation could enable
the use of GPs on larger grids. This can lead to the possibility of applying
this method on current weak lensing catalogues and perhaps even full sky
catalogues. Another pathway to explore are lognormal fields, as they do a
much better job at simulating data than GRFs. Due to GPs being Gaussian,
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5. Conclusion

their associated likelihood is not suitable to treat lognormal fields. A modified
likelihood could therefore unlock a correct application of GPs to lognormal
fields.
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14A. Nicola, C. Garćıa-Garćıa, D. Alonso, J. Dunkley, P. G. Ferreira, A. Slosar,
and D. N. Spergel, “Cosmic shear power spectra in practice”, Journal of
Cosmology and Astroparticle Physics 2021, 067 (2021) (page 6).

15Z. Gao, A. Raccanelli, and Z. Vlah, “Asymptotic connection between full-
and flat-sky angular correlators”, Phys. Rev. D 108, 043503 (2023) (page 6).

16W. L. Matthewson and R. Durrer, “The flat sky approximation to galaxy
number counts”, Journal of Cosmology and Astroparticle Physics 2021, 027
(2021) (page 6).

17Z. Gao, Z. Vlah, and A. Challinor, “Flat-sky angular power spectra revis-
ited”, (2023) (pages 6, 7).
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