Skip to article frontmatterSkip to article content

Fourier Transform

For a continuous and unbounded field, Fourier Transform (FT) can be applied:

f(x)=ΩdpkF(k)ei2πkx.f(\bm{x}) = \int_\Omega d^p\bm{k} F(\bm{k}) e^{i2\pi\bm{k}\cdot\bm{x}}.
θxl2πk.\begin{align} \bm{\theta} &\equiv \bm{x}\\ \bm{l} &\equiv 2\pi\bm{k}. \end{align}

We obtain,

f(θ)=Ωdp(l2π)F(l)eilθ=1(2π)pΩdplF(l)eilθ.\begin{align} f(\bm{\theta}) &= \int_\Omega d^p \left(\frac{\bm{l}}{2\pi}\right) F(\bm{l}) e^{i\bm{l}\cdot\bm{\theta}}\\ & = \frac{1}{(2\pi)^p}\int_\Omega d^p\bm{l} F(\bm{l}) e^{i\bm{l}\cdot\bm{\theta}}. \end{align}

In fact, in the flat sky approximation we can treat C(l)C(l) as a 2D power spectrum on a plane, which gives Dodelson & Schmidt (2021):

w(θ)=14π2Ωd2lC(l)eilθw(\theta)=\frac{1}{4\pi^2}\int_\Omega d^2\bm{l} C(l) e^{i\bm{l}\cdot\bm{\theta}}

Full vs Flat

Full sky

w(X,Y)=δ^(X),δ^(Y)=llmmYlmYlmδ^mmδ^ll=llmmYlmYlmδmmδllCl=lClmYlmYlm=\begin{align} w(X,Y) &=\langle \hat{\delta}(X), \hat{\delta}(Y)\rangle \nonumber \\ &= \sum_{ll'}\sum_{mm'} Y^m_l \overline{Y}^{m'}_{l'} \langle \hat{\delta}_{mm'}\hat{\delta}_{ll'} \rangle \nonumber \\ &= \sum_{ll'}\sum_{mm'} Y^m_l \overline{Y}^{m'}_{l'}\delta_{mm'}\delta_{ll'}C_l \nonumber \\ &= \sum_{l}C_l\sum_{m} Y^m_l \overline{Y}^{m}_{l} \nonumber \\ &= \end{align}
w(μ)=l2l+14πClPl(μ)    μw(μ)Pl(μ)=l2l+14πClμPl(μ)Pl(μ)=12πClCl=2πμw(μ)Pl(μ)\begin{align} w(\mu) &=\sum_{l}\frac{2l+1}{4\pi}C_lP_l(\mu)\\ \implies \int \mu w(\mu) P_{l'}(\mu) &= \sum_{l}\frac{2l+1}{4\pi}C_l\int \mu P_{l'}(\mu)P_l(\mu)=\frac{1}{2\pi}C_{l'} \nonumber \\ C_l &= 2\pi \int \mu w(\mu) P_{l}(\mu) \end{align}

Flat sky

w(θ)=FT1C(l)=d2l(2π)2eilθC(l)=dl(2π)2lC(l)dϕeilθcos(ϕ)=dl2πlC(l)J0(lθ)\begin{align} w(\theta) &=FT^{-1}C(\bm l)\\ &=\int \frac{d^2l}{(2\pi)^2} e^{i\bm l \cdot \bm \theta}C(\bm l) \nonumber\\ &=\int \frac{dl}{(2\pi)^2} l C(l)\int d\phi e^{il\theta cos(\phi)} \nonumber\\ &=\int \frac{dl}{2\pi} l C(l) J_0(l\theta) \end{align}

Now to prove the equivalence between the flat sky and full sky relation, plug in the full sky Eq. 6,

Cl=2πμdl2πlC(l)J0(lθ(μ))Pl(μ)=dllC(l)μJ0(lθ(μ))Pl(μ)\begin{align*} C_l &= 2\pi \int \mu \int \frac{dl'}{2\pi} l' C(l') J_0(l'\theta(\mu)) P_{l}(\mu) \nonumber\\ &= \int dl' l' C(l') \int \mu J_0(l'\theta(\mu)) P_{l}(\mu) \nonumber \end{align*}

for l1,J0(lθ)Pl(μ)l\gg1, J_0(l'\theta)\rightarrow P_{l'}(\mu)

dllC(l)μPl(μ)Pl(μ)dllC(l)δlll=C(l)\begin{align} &\sim \int dl' l' C(l') \int \mu P_{l'}(\mu) P_{l}(\mu) \nonumber\\ &\sim \int dl' l' C(l') \frac{\delta_{ll'}}{l} \nonumber\\ &= C(l) \end{align}

Discrete Fourier Transform

Moving to the discrete and bounded case, a Discrete Fuorier Transform (DFT) approach is needed:

f(n)=1N1N2...Npp=0N1F(p)ei2πp(nN1).f(\bm{n}) = \frac{1}{N_1N_2...N_p}\sum_{\bm{p}=0}^{\bm{N}-1} F(\bm{p}) e^{i2\pi\bm{p}\cdot \left( \bm{n}\circ \bm{N}^{\circ -1}\right)}.
θLnN1l2πpL1\begin{align} \bm{\theta} &\equiv \bm{L}\circ \bm{n}\circ \bm{N}^{\circ -1}\\ \bm{l} &\equiv 2\pi\bm{p}\circ\bm{L^{\circ-1}} \end{align}

We obtain,

f(θ)=1N1N2...Npl=02πL1(N1)F(l)eilθf(\bm{\bm{\theta}}) = \frac{1}{N_1N_2...N_p}\sum_{\bm{l}=0}^{2\pi\bm{L^{\circ-1}}(\bm{N}-1)} F(\bm{l}) e^{i\bm{l}\cdot\bm{\theta}}

where we have made use of the properties of the Hadamard Product , a pair-wise product operation. We can additionally define

lmax2πL1(N1)\bm{l_{max}} \equiv 2\pi\bm{L^{\circ-1}}(\bm{N}-1)

to obtain

f(θ)=1N1N2...Npl=0lmaxF(l)eilθf(\bm{\bm{\theta}}) = \frac{1}{N_1N_2...N_p}\sum_{\bm{l}=0}^{\bm{l_{max}}} F(\bm{l}) e^{i\bm{l}\cdot\bm{\theta}}

Applying this general equation to our 2D flat sky case of a field defined on a square box of size (L, L) and pixels (N, N).

θnLNl2πpLlmax2πN1L\begin{align} \bm{\theta} &\equiv \bm{n}\frac{L}{N}\\ \bm{l} &\equiv 2\pi\frac{\bm{p}}{L}\\ l_{max} &\equiv 2\pi\frac{N-1}{L} \end{align}
w(θ)=1N2l=0lmaxC(l)eilθw(\theta)=\frac{1}{N^2}\sum_{\bm{l}=0}^{l_{max}} C(l) e^{i\bm{l}\cdot\bm{\theta}}
References
  1. Dodelson, S., & Schmidt, F. (2021). 13 - Probes of structure: lensing. In S. Dodelson & F. Schmidt (Eds.), Modern Cosmology (Second Edition) (Second Edition, pp. 373–399). Academic Press. https://doi.org/10.1016/B978-0-12-815948-4.00019-X